
Abstract

Machine learning using deep neural networks (DNNs) has been used in vast areas
such as image recognition, object detection, and natural language processing. The
success of DNNs has been brought by its ability to represent arbitrarily complex
functions when a sufficiently large number of parameters are used and to extract
essential features from large data sets. In most cases, however, DNNs are like a
black box, and the reason for their high generalization performance is not fully
understood. Recently, a statistical mechanical analysis based on the spin glass
theory was performed to understand what is going on inside DNNs. By regarding
the DNN as a spin system and examining the spin glass order parameters in each
layer of the DNN, it was shown that the layers near the input and output are spin
glassy (or solid like), while the central layers remain paramagnetic (or liquid like).
Such a characteristic phase structure appears to play an important role in machine
learning using DNNs, but further research is required to clarify the internal structure
of DNNs in actual learning, since it is in general different from the equilibrium state
in the statistical mechanical analysis.

In this thesis, we study the internal structures of DNNs based on the spin glass
theory, by performing actual learning in a feed-forward neural network with back
propagation. Specifically, we introduce “temperature” in the activation function
in the DNNs. We first set the temperature to be uniform in all layers and tune
its value. We find that the DNNs maximizes its performance in an intermediate
temperature range, indicating that the temperature is a key quantity to enhance
the network performance. We next allow the temperature to take different values
for different layers and optimize them in the learning process. We find that the
DNNs can achieve higher performance than the uniform temperature. In particular,
the DNN shows the best performance when we optimize the temperature with an
algorithm called label smoothing. We find that the distribution of temperature
after learning is highly asymmetric with respect to the distances from the input and
output layers; temperatures are relatively low in some layers near the output layer,
while those in the other layers are close to the optimum value which maximizes
the network performance in the case with the uniform temperature. In addition,
by analyzing the spin glass order parameters, we find that the internal structure
of DNNs is asymmetric because of the back propagation in the learning process, in
contrast to the previous study. Our findings would pave the way for clarification of
the mechanism of deep learning and a better design of DNNs.

ii


