
Abstract

Artificial neural networks have established themselves as a cornerstone of the
modern information-centric society. In these networks, mathematically modeled
neurons are intricately interconnected, and their weight parameters are trained
with sophisticated methods leveraging big data. Increasing the network depth un-
doubtedly improves their performance, however, at the expense of a significant in-
crease in computational time and energy consumption during the training process.
In a recent paradigm shift, these networks have been materialized into physical
forms, conceptualizing a physical system as an embodiment of a neural network
with predetermined weights. This innovative approach, which is a departure from
traditional von-Neumann architectures, circumvents the complex training process
and the energy-consuming silicon-based systems. A leading methodology in this
context is physical reservoir computing. There, the nonlinear transformation of
input data is carried out by nonlinear phenomena in a system referred to as a “phys-
ical reservoir”. The computational efficacy is deeply connected to the properties
of the physical reservoir, with a plethora of promising platforms being explored.

In this thesis, we aim to propose effective strategies for harnessing classical
and quantum systems in physical reservoir computing. Particularly, for magnetic
materials, we introduce a frequency filtering protocol to achieve thermal robust-
ness and spatiotemporal parallelization, addressing key challenges in device re-
alization. Furthermore, to overcome the measurement back-actions inherent in
quantum reservoir computing frameworks, we present a novel approach that in-
volves feedback connections based on the outcomes of projective measurements.
Our demonstrations illustrate that these methodologies significantly enhance the
practicality and applicability of physical reservoir computing.

Interestingly, the diverse computational performance exhibited by various types
of physical reservoirs suggests an alternative research direction; namely, examin-
ing the physical system itself through computational efficiency when employed as
a physical reservoir. Here, another aim of this thesis is to develop a framework
for probing quantum systems by expanding the paradigms of physical reservoir
computing, which we call as quantum reservoir probing (QRP). In this framework,
random information is locally introduced into the quantum system, and we then at-
tempt to deduce that input from the expectation value of a local operator through
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a linear transformation. The accuracy of this estimation serves as a measure of
information propagation. We demonstrate that the QRP can effectively trace how
information is distributed across various degrees of freedom at individual points
in time. Furthermore, we observe that the dynamics of information propagation
exhibit different characteristics in distinct quantum phases, serving as a marker of
quantum phase transitions. The QRP method holds promise for unveiling novel
insights into a broad spectrum of exotic quantum many-body phenomena.

The results in this thesis demonstrate the bi-directional application of physics
for computation and computation for physics. Our theoretical contributions in
this interdisciplinary field pave the way for pioneering computational techniques
in physical systems, while simultaneously deepening our understanding of physical
principles. We believe that the frameworks we have established for harnessing and
probing nature would lay the foundation for future research endeavors in condensed
matter physics, machine learning technologies, and quantum information science.
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